Hi there! This webpage covers the space and time Big-O complexities of common algorithms used in Computer Science. When preparing for technical interviews in the past, I found myself spending hours crawling the internet putting together the best, average, and worst case complexities for search and sorting algorithms so that I wouldn't be stumped when asked about them. Over the last few years, I've interviewed at several Silicon Valley startups, and also some bigger companies, like Yahoo, eBay, LinkedIn, and Google, and each time that I prepared for an interview, I thought to myself "Why oh why hasn't someone created a nice Big-O cheat sheet?". So, to save all of you fine folks a ton of time, I went ahead and created one. Enjoy!
Searching
Sorting
Algorithm | Data Structure | Time Complexity | Worst Case Auxiliary Space Complexity |
| | Best | Average | Worst | Worst |
Quicksort | Array | O(n log(n)) | O(n log(n)) | O(n^2) | O(n) |
Mergesort | Array | O(n log(n)) | O(n log(n)) | O(n log(n)) | O(n) |
Heapsort | Array | O(n log(n)) | O(n log(n)) | O(n log(n)) | O(1) |
Bubble Sort | Array | O(n) | O(n^2) | O(n^2) | O(1) |
Insertion Sort | Array | O(n) | O(n^2) | O(n^2) | O(1) |
Select Sort | Array | O(n^2) | O(n^2) | O(n^2) | O(1) |
Bucket Sort | Array | O(n+k) | O(n+k) | O(n^2) | O(nk) |
Radix Sort | Array | O(nk) | O(nk) | O(nk) | O(n+k) |
Data Structures
Data Structure | Time Complexity | Space Complexity |
| Average | Worst | Worst |
| Indexing | Search | Insertion | Deletion | Indexing | Search | Insertion | Deletion | |
Basic Array | O(1) | O(n) | - | - | O(1) | O(n) | - | - | O(n) |
Dynamic Array | O(1) | O(n) | O(n) | O(n) | O(1) | O(n) | O(n) | O(n) | O(n) |
Singly-Linked List | O(n) | O(n) | O(1) | O(1) | O(n) | O(n) | O(1) | O(1) | O(n) |
Doubly-Linked List | O(n) | O(n) | O(1) | O(1) | O(n) | O(n) | O(1) | O(1) | O(n) |
Skip List | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(n) | O(n) | O(n) | O(n) | O(n log(n)) |
Hash Table | - | O(1) | O(1) | O(1) | - | O(n) | O(n) | O(n) | O(n) |
Binary Search Tree | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(n) | O(n) | O(n) | O(n) | O(n) |
Cartresian Tree | - | O(log(n)) | O(log(n)) | O(log(n)) | - | O(n) | O(n) | O(n) | O(n) |
B-Tree | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(n) |
Red-Black Tree | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(n) |
Splay Tree | - | O(log(n)) | O(log(n)) | O(log(n)) | - | O(log(n)) | O(log(n)) | O(log(n)) | O(n) |
AVL Tree | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(n) |
Heaps
Graphs
Node / Edge Management | Storage | Add Vertex | Add Edge | Remove Vertex | Remove Edge | Query |
Adjacency list | O(|V|+|E|) | O(1) | O(1) | O(|V| + |E|) | O(|E|) | O(|V|) |
Incidence list | O(|V|+|E|) | O(1) | O(1) | O(|E|) | O(|E|) | O(|E|) |
Adjacency matrix | O(|V|^2) | O(|V|^2) | O(1) | O(|V|^2) | O(1) | O(1) |
Incidence matrix | O(|V| ⋅ |E|) | O(|V| ⋅ |E|) | O(|V| ⋅ |E|) | O(|V| ⋅ |E|) | O(|V| ⋅ |E|) | O(|E|) |
Notation for asymptotic growth
letter | bound | growth |
(theta) Θ | upper and lower, tight[1] | equal[2] |
(big-oh) O | upper, tightness unknown | less than or equal[3] |
(small-oh) o | upper, not tight | less than |
(big omega) Ω | lower, tightness unknown | greater than or equal |
(small omega) ω | lower, not tight | greater than |
In short, if algorithm is __ then its performance is __
algorithm | performance |
o(n) | < n |
O(n) | ≤ n |
Θ(n) | = n |
Ω(n) | ≥ n |
ω(n) | > n |
Big-O Complexity Chart
This interactive chart, created by our friends over at
MeteorCharts, shows the number of operations (y axis) required to obtain a result as the number of elements (x axis) increase. O(n!) is the worst complexity which requires 720 operations for just 6 elements, while O(1) is the best complexity, which only requires a constant number of operations for any number of elements.
Không có nhận xét nào:
Đăng nhận xét